辉煌配资 可媲美GPT-4o的开源图像生成框架来了!解决角色一致性难题_特征_编码器_适配器
GPT-4o带火的漫画风角色生成辉煌配资,现在有了开源版啦!
腾讯混元携手InstantX团队合作打破次元壁,开源定制化角色生成插件——InstantCharacter。
以往针对角色驱动的图像生成方法,都存在一定的缺陷。
例如,基于适配器的方案虽然基本实现主体一致和文本可控,但在泛化性、姿势变化和风格转换的开放域角色方面仍然存在困难。基于微调则需对模型进行重新训练,从而浪费过长的时间。更不必说,费用高昂的推理时间的微调。
而现在这个插件基于DiTs(Diffusion Transformers),能在保证推理效率和文本可编辑性的同时,完美实现角色个性化创作。
展开剩余73%那么一起看看它具体是如何实现的?辉煌配资
方法介绍
现代 DiTs与传统的UNet架构相比,展现出前所未有的保真度和容量,为生成和编辑任务提供了更强大的基础。基于此,InstantCharacter扩展了DiT,从而用于强泛化性和高保真的角色驱动图像生成。
InstantCharacter的架构围绕两个关键创新展开:
1.可扩展适配器:开发了一个可扩展的适配器模块,有效解析角色特征并与DiTs潜在空间无缝交互。
2.渐进训练策略:设计了一个渐进式三阶段训练策略,以适应收集的多功能数据集,使角色一致性和文本可编辑性的分开训练成为可能。
可扩展的适配器设计辉煌配资
传统的定制适配器,例如IPAdapter或ReferenceNet,在DiT架构中往往失效,因为它们是专为基于U-Net的模型设计的,缺乏可扩展性。
为了更好地适应DiT模型,研究员提出了一种可扩展的full-transformer适配器,它作为角色图像与基础模型潜在生成空间之间的关键连接,通过增加层深度和隐藏特征尺寸实现可扩展性。
该适配器由三个编码器块组成:
1.通用视觉编码器:
首先利用预训练的大型视觉基础编码器来提取通用角色特征,从它们的开放域识别能力中受益。
以前的方法通常依赖于CLIP,因为它对齐了视觉和文本特征。然而,虽然CLIP能够捕捉抽象的语义信息,但它往往会丢失对维持角色一致性至关重要的详细纹理信息。为此,研究者用SigLIP替代CLIP,SigLIP在捕捉更细粒度的角色信息方面表现出色。
此外,引入DINOv2作为另一个图像编码器来增强特征的稳健性,减少背景或其他干扰因素导致的特征损失。
最后,通过在通道维度的拼接整合DINOv2和SigLIP特征,从而获得更全面的开放域角色表示。
2.中间编码器:
由于SigLIP和DINOv2是在相对较低的384分辨率下预训练和推理的,在处理高分辨率角色图像时,通用视觉编码器的原始输出可能会丢失细粒度特征。为了缓解这个问题,采用双流特征融合策略分别探索低级特征(low-level features)和区域级特征(region-level features)。
首先,直接从通用视觉编码器的浅层提取low-level features,捕捉在更高层次中常常丢失的细节。
其次,将参考图像分割成多个不重叠的区块,并将每个区块输入视觉编码器以获取region-level features。
然后,这两种不同的特征流通过专用的中间transformer编码器进行分层整合。具体来说,每个特征路径都由独立的transformer编码器单独处理,以与高级语义特征整合。随后,来自两个路径的精炼特征沿着token维度连接,从而建立一个全面的融合表示,捕捉多层次的互补信息。
3.投影头:
最后,精炼的角色特征通过投影头投射到去噪过程,并与潜在噪声交互。通过时间步感知的Q-former实现这一点辉煌配资,它将中间编码器输出作为键值对处理,同时通过注意力机制动态更新一组可学习的查询向量。转换后的查询特征随后通过可学习的交叉注意力层注入去噪空间。最终,适配器可以实现强身份保持和复杂文本驱动的灵活适应。
发布于:中国香港思考资本提示:文章来自网络,不代表本站观点。